CNN Feature Boosted SeqSLAM for Real‐Time Loop Closure Detection
نویسندگان
چکیده
منابع مشابه
CNN Feature boosted SeqSLAM for Real-Time Loop Closure Detection
Loop closure detection (LCD) is an indispensable part of simultaneous localization and mapping systems (SLAM); it enables robots to produce a consistent map by recognizing previously visited places. When robots operate over extended periods, robustness to viewpoint and condition changes as well as satisfactory real-time performance become essential requirements for a practical LCD system. This ...
متن کاملSynchronous Adversarial Feature Learning for LiDAR based Loop Closure Detection
Loop Closure Detection (LCD) is the essential module in the simultaneous localization and mapping (SLAM) task. In the current appearance-based SLAM methods, the visual inputs are usually affected by illumination, appearance and viewpoints changes. Comparing to the visual inputs, with the active property, light detection and ranging (LiDAR) based point-cloud inputs are invariant to the illuminat...
متن کاملVisual Loop-Closure Detection Method Using Average Feature Descriptors
This paper proposes a novel visual loop-closure method using average feature descriptors. The average feature descriptors are computed by averaging the descriptors of feature points at each frame. Through GPGPU (General-Purpose computing on Graphics Processing Units) technique, the proposed method selects a frame having a minimum distance with the current average feature descriptor from the ave...
متن کاملLCNN: Low-level Feature Embedded CNN for Salient Object Detection
In this paper, we propose a novel deep neural network framework embedded with low-level features (LCNN) for salient object detection in complex images. We utilise the advantage of convolutional neural networks to automatically learn the high-level features that capture the structured information and semantic context in the image. In order to better adapt a CNN model into the saliency task, we r...
متن کاملTowards Stable Adversarial Feature Learning for LiDAR based Loop Closure Detection
Stable feature extraction is the key for the Loop closure detection (LCD) task in the simultaneously localization and mapping (SLAM) framework. In our paper, the feature extraction is operated by using a generative adversarial networks (GANs) based unsupervised learning. GANs are powerful generative models, however, GANs based adversarial learning suffers from training instability. We find that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Electronics
سال: 2018
ISSN: 1022-4653,2075-5597
DOI: 10.1049/cje.2018.03.010